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Abstract

The expression for the probability density function of scalar field pulsation values is derived taking into account
the fractal and multiscales structure of turbulence. The evolution of this function was stated by the detailed
structure of the probability distribution of length scales of a scalar turbulent field. The expression for the latter has
been found using the fractal character of the surfaces separated the regions with the different scalar concentrations
in turbulent flows. Analytical expressions for the conditional dissipation rate of scalar fluctuations were proposed
using the hypothesis on typical realisations of a scalar turbulent field which were different at various evolution
stages. It is possible to consider these expressions as an attempt to explain a sufficiently complicated transformation
of the form of conditional dissipation, which were obtained by direct numerical simulation of a turbulent scalar
field. The obtained analytical expressions for a conditional dissipation rate can be useful to study the turbulent
combustion process in the framework of the laminar diffusion flamelet models. © 1999 Elsevier Science Ltd. All

rights reserved.

1. Introduction

When the processes of turbulent mixing of scalar
fields, including reacting ones, is described, it is often
possible to confine the investigation to the probability
density function (PDF) of one scalar quantity fi(c) [1].
The scalar field ¢ in this case can mean some variables
like the Shvab-Zeldovich function used to examine
turbulent flows with non-premixed reactants [2] or the
progress variable adopted to describe turbulent flows
with premixed reactants [3].

For the expression for the function fi(c) to be de-
rived it is very important to take into account the
many-length scale character of the turbulent mixing
process [4]. When studying the turbulent mixing of
scalar fields, it is easy at a qualitative level to
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distinguish two aspects of the process, that is the
dynamics of length scales and the dynamics of the fluc-
tuation intensity of this field. Consider, for instance,
mixing of the scalar field in the isotropic turbulent
flow. When in the gas or liquid grid flow some other
grid generates the scalar fluctuation field, then the
evolution of this scalar field is a rather good example
of turbulent mixing. The scalar field near the second
grid mainly has only two values: zero and unity, in ac-
cordance with the condition of full unmixedness at the
molecular level. The typical length scale of unmixed
gas volumes is specified by introducing this scalar field
into the flow. Different values of this field appear
downstream, and at the same time there occurs the
whole spectrum of length scales. It is clear that these
two aspects of turbulent mixing permanently interact.
The evolution of the length scale spectrum creates a
steadily varying condition for the effect of molecular
diffusion, thereby influencing the dissipation rate of
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Nomenclature
f the deviation of fractal from topological
dimension

flo) probability density function of scalar field

filc, A) one-length scale probability density func-
tion of scalar field

P(A) distribution scale of the turbulent length

scales
P(t) distribution of time scales
Re Reynolds number

St the area of the surface separating the
regions with different scalar concentrations
in developed turbulent flow

S; the area of the surface measured with the
resolution 4>y

Greek symbols

] Kolmogorov length scale

(1) Heaviside function

¥(tlc)  scalar conditional dissipation rate

scalar field fluctuation intensity. The different parts of
the length scale spectrum effect the dissipation rate of
the fluctuation intensity in a different way. From
physical consideration it is seen that small length scales
more strongly influence the structure of the value spec-
trum. All these effects are different for different fluctu-
ation values and for different parts of the length scale
spectrum. These complex dynamics must is some way
be taken into consideration in developing the theoreti-
cal model of turbulent mixing of reactants.

To describe the turbulent mixing process, use is
usually made of the one-point probability function of
scalar field fluctuation. However, the presence of the
spectrum of length scales is, as a rule, ignored. The
state of the scalar field in this relation is taken into
account in terms of some average length scale or aver-
age dissipation rate of the fluctuation intensity. It is
likely, that just the disregard of many scale characters
of turbulent mixing is responsible for the absence of
quite a satisfactory closed system of equations for the
process.

The many-length scale character of turbulent mixing
is closely related with the many-time scales character
of a turbulent reacting scalar field. As it is shown in
[5], the taking into consideration of the distribution of
time scales is very important for studying turbulent dif-
fusion flame with kinetic effects.

The many-length scale character of turbulent mixing
is closely connected with the fractal property of the
turbulent velocity and scalar field [6]. Therefore, any
mixing model of scalar fields has to take into consider-
ation the fractal dimensions of surfaces in turbulent
flows.

The goal of this work is to demonstrate how it is
possible to get the expression for the PDF of the scalar
field with the use of the many-length scale and the
fractal character of turbulence and to estimate the
quantitative difference between the usual and fractal
approaches to the mixing problem.

2. Distribution of turbulent length scales

The expression for the PDF fi(c) was obtained by
the next procedure. First, an expression is written for
the one-length scale PDF fi(c, 2) which is the solution
of the one-length scale mixing model [4]. The function
fuc, A) then has to be averaged over the distribution of
the turbulent length scale P(1). As a result the ex-
pression is obtained for the PDF fi(c) which has to be
correct for the many-length scale turbulent flow.

o) = Jﬁ(c, HP() di )

The physical meaning of the function P(1) consists of
the probability of the presence of the pieces of the
interface A in size in the turbulent scalar field. This
interface separates the regions with different scalar
concentration. In Ref. [4] for this purpose to be im-
plemented the function P{(1) was proposed. This func-
tion was defined so that the following quality was
warranted

@ =[P
0

where (c2(¢)) is the dispersion of the turbulent scalar
field. After the normalisation this function could be
interpreted as the probability density function of
length scale values. However, the role of the function
P; may more appropriately be played by the function
immediately related with the interface distribution over
different length scales.

If in accordance with the results of [6] the surface
separating the regions with different scalar concen-
tration in developed turbulent flows is assumed to be
fractal, then the area of this surface St per unit of
fluid volume with the Schmidt number S.=1, may be
found by the formula

St = Son/L)” @)



V.A. Sosinovich et al. | Int. J. Heat Mass Transfer 42 (1999) 3959-3966 3961

=171

377 (b)

=11.4

1=34.2 i

Fig. 1. Form of PDF in accordance with one-scale (1) and many-scale (2) models.

Here S, is the surface area measured with resolution
L, L being the macroscale of the length, # being the
Kolmogorov length scale, f=D — 2 is the deviation of
fractal from topological dimensions which is equal to
two.

The estimates [6] and the straightforward measure-
ments of fractal dimensions of surfaces in different tur-
bulent flows make it possible to assume that the value
of D is equal to 2.35. Therefore,

f=D-2=035 3

The area of the interface measured with the resolution
A>n is defined by the formula

S; == So(/L)7 4

As the hypothesis for the function P(4) to be calcu-
lated, the following formula can be used

P(A)~P(S))~ (/L) )

Such a hypothesis leads to a plausible dependence of
the probability of length scales on the fractal exponent
f. The larger the fractal exponent f, the more com-
pactly the surface is embedded in the volume of the
fluid, and the smaller the length scale A, which separ-
ated the regions with different concentrations of the
scalar field, are more probable. The absence of fractal-
ity, £ = 0, reduces the distribution of length scales to
be uniform.

The function P(A) has to be normalised to unity
under integration over all length scales A from the
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point of A=0 to the point of A=L. The normalised
function P(1) has the form

S
U=7)2 -, ifn<d<L

LN~ (/D) ] (6)

0, if A<, A> L

P =

For developed turbulent flow with a large Reynolds
number Re=u'L/v (u' is the rms value of turbulence
fluctuations, v is the kinematic viscosity coefficient)
there exist the relation between Kolmogorov’s length
scale # and the macroscale L [7].

n/L = Re/* Y

The formula for P(4) in this case has the form
PG =(1—f)27100G — 1) = @@ — Re™¥)]
X (Re_3/4(1_f ) 1)‘1 (8)

with the notation 1 = A/n used, @ being the Heaviside
function.

Let us note that formula (6) may also be used to cal-
culate P(4) in non-developed unsteady turbulent flow.
In this case, the length scales L(¢) and 5(z) must be
calculated from some closed system of the equations
like the k—¢ model or from the closed equation for the
length scale energy distribution P.,(1) [8].

3. Many-length scale probability function

In Ref. [4] the expression for the PDF fi(c, 1) was
derived for the one-length scale of the scalar field. This
function, in dimensionless variables (¢=c/a, T=3tD/n>
where a is the maximal value of scalar concentration
and D is the coefficient of molecular diffusion) has the
form

file, ) = €77 fo(é 7y )

where fo(¢) is the initial form of PDF. Expression (9)
coincides with the one for PDF which may be obtained
by the mean square estimation theory of the con-
ditional expected value E(c’lc) [9]. The defect of this
closure had been discussed [1] and alternative approxi-
mations were suggested [10]. The derivation of this
form for the PDF, which was done in [4], points
clearly to the one-length scale character of this model.
If expression (9) is substituted into (1), then the follow-
ing formula can be obtained

£.0) = J "% fo(c 7Y P(2) A2 (10)
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Fig. 2. Evolution of dispersion of scalar fluctuation in the
case of taking the fractality into consideration (1) and without
it (2).

Let us choose the initial PDF fy(¢) as corresponding to
the sine form of the concentration field. The solution
of the one-length model (9) conserves this unchanged
forever. After taking many-length scales into account,
in accidence with (10), this solution essentially changes.
If P(A) form (8) is chosen, which corresponds to devel-
oped turbulence, then we will get the following ex-
pression for f; (¢)

Re™/4
F:@ = (1 —fn  [Re™) gy I 2
: an

et/212@[]_ | ¢ ' er/212][1 _ 6'2 e‘J:/Mz]—l di

The bracketed expression in formula (11) defines the
region of non-zero values of the function f,(¢). This
expression for the PDF f.(¢) describes the turbulent
mixing process of the scalar field, starting with segre-
gated conditions of the scalar field up to the terminal
conditions in the form of f;(¢)=46(¢).

In the latter case the entire mixture becomes mixed
up to the molecular level. As is seen from Fig. la—d,
the many length scale model reflects the turbulent mix-
ing process more realistically than a one-length scale
model, demonstrating all values of concentrations at
intermediate times of evolution.

The bimodal form of the PDF reflects the possibility
of the simultaneous presence of the fresh unmixed
regions and mixtures mixed up to molecular level in
the flow. Such a form qualitatively corresponds to the
experimental data [2] and results of the calculation of
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Fig. 3. Typical realisation of scalar field and its gradient. Initial stage of evolution. (b) Typical realisation of scalar field and its
gradient. Intermediate stage of evolution. (c) Typical realisation of scalar field and its gradient. Developed stage of evolution.

PDF by the linear eddy mixing model [11], when wide-
band length scale distribution is used.

The significance of taking into account the fractality
of the turbulent field for calculation of the turbulent
mixing rate can be evaluated by comparing the evol-
ution of the intensity of the turbulent scalar field of
fluctuations predicted by the formula

o = (@) = Jész(é) dé (12)

with 7 (¢) in the form (11) at the values of the fractal
exponent f = 0 and f = 0.35.

As is seen from Fig. 2 the account of the fractality
brings a noticeable difference in the rate of scalar
intensity dissipation, especially during the initial period
of mixing. It is clear that for the chemical reaction rate

to be calculated taking into account the fractality may
appear to be more essential as yet.

As mentioned above, the many-length scale distri-
bution is associated with the many-time scale character
of the turbulent reacting scalar field [5]. If length scale
A is the thickness of the interface in the turbulent
scalar field, then the characteristic time scale of
molecular diffusion on this scale has to be [7]
1= A 13)
Hence, the distribution of time scales related with
length scales distribution (8) has the form

P(‘L’) — (1 _f )T—1/2(l+f )[@(‘L' _ 1) _ @(‘L’ _ Re3/2)]
x 2 R — 7! (14)
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This distribution of the time scale is connected with
the fractal structure of turbulent surfaces.

Let us emphasise that the present method makes it
possible to calculate the one-point PDF depending on
the fluctuation length scale whose influence should be
allowed for.

4, Scalar conditional dissipation rate

One of the most important characteristics of the tur-
bulent flow necessary for different theoretical descrip-
tions of turbulent combustion is the scalar condition
dissipation rate y(t|¢) [12]. This function was obtained
in [13] as a result of direct numerical simulations of
evolution of a turbulent scalar field. It was shown that
during evolution the form of this function underwent
essential changes, from the parabolic form with a
maximum under small fluctuations to the form inde-
pendent on the value of the latter, then again to the
parabolic form but with a minimum under small fluc-
tuations. Such a behaviour of conditional dissipation is
verified by experimental study of this function in differ-
ent turbulent flows [I14]. The proposed analytical
models for this function do not reflect its ability to
transform its form essentially in the process of evol-
ution [15].

It seems plausible to assume that such a complicated
transformation of conditional dissipation is related
with a change of typical modes of a scalar field in tur-
bulent flow. If it is assumed that the typical modes of
a scalar field evolve from a sine-shaped form respon-
sible for the beginning of turbulent mixing through a
saw-tooth form to a sharp form of scalar fluctuations,
then these modes of scalar field will be consistent with
different forms of scalar gradients, hence, with different
forms of conditional dissipation (Fig. 3a—c).

Rather simple calculations performed for every case
separately result in the following analytical expression
for conditional dissipation

. 1 ;
1A 1D =0~ | ¢ e (1 — ) (15)
A
Here and later on

c=éel” (16)

N 6 2
(@il =0—|c l)?e_w +[O( ¢ | —c1)
A
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Fig. 4. Conditional dissipation rate for one-length scale
model. 1. According to (15), 2. according to (17), 3. according
to (19).

where

2
13(t, A 0) = @[1 — l_“](z_"fzi]vz o~/
o N

2n/(2n+1) 2/(2n+1)
% (i) [1 _ L] (19)
N N

Here

[ @+
N=\a2antou @0

The parameter n must be chosen rather large (n = 10).

The Heaviside function @(x) defines the domain of
the existence of the functions y;(t, A|¢). The parameter
/. determines the length scale of a scalar field.

With typical realisation as in Fig. 3a, when the
values of scalar fluctuations are small, the gradient
(hence, the dissipation rate) has a maximum, and vice
versa, the gradient is small when the values of scalar
fluctuations are large. This results in a parabolic form
of conditional dissipation (15) (curve | in Fig. 4).

As demonstrated in Fig. 3b, the gradient value
remains invariable for any values of scalar fluctuations.
The dissipation rate does not change either. At the
points where the scalar field has a maximum the gradi-
ent is equal to zero. Therefore, the dissipation rate in
these points tends to zero (17) (curve 2 in Fig. 4).
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Fig. 5. Conditional dissipation rate for many-length scale
model.

With typical realisation as in Fig. 3c, the gradient
maximum is seen at values of the scalar field large
enough. When the values of scalar fluctuations are
small the gradient values are small as well. The be-
haviour of the inner part of the conditional dissipation
curve is just associated with this. At the maximum
values of the scalar field the gradient passes through
zero, thus decreasing the dissipation rate under maxi-
mum scalar fluctuations. With this in view, the
branches of curve 3 in Fig. 4 descend.

The obtained expressions for the scalar conditional
dissipation rate are said to be a one-length scale model
for this function because typical realisations only with
a one-length scale were used for deriving these ex-
pressions. It is possible to obtain more realistic ex-
pressions for conditional dissipation by averaging
expressions (15), (17) and (19) over the probability dis-
tribution of length scales P(4) defined by formula (8)

1:(t, €) = J r(t, A | OP(A)dA, i=1,2,3 21

s

The forms of conditional dissipation calculated by this
formula for three examined stages of evolution of a
scalar field are demonstrated in Fig. 5. As seen from
comparison of Figs. 4 and 5, account of many scales
does not radically change conditional dissipation. It is
possible that the influence of many scales manifests
itself in the transformation rate of the forms of the
function.

5. Conclusions

An expression for the one-point probability density
function of scalar turbulent field f;(c) was derived
using the concept about the many-length scale charac-
ters of the turbulent mixing process. The evolution of
this function was stated by the detailed structure of the
probability distribution of length scales of the scalar
turbulent field P(41). The expression for the function
P(4) has been found using the fractal character of the
surfaces separated by the regions with the different
scalar concentrations in turbulent flows. The many-
length scale model of PDF can be of practical import-
ance for describing the essentially non-Gaussian situ-
ation demonstrating the two-modal form of this
function.

Analytical expressions for the conditional dissipation
rate of scalar fluctuations were proposed using the hy-
pothesis on typical realisations of a scalar turbulent
field which were different at various evolution stages.
It is possible to consider these expressions as an
attempt to explain a sufficiently complicated trans-
formation of the form of conditional dissipation,
which were obtained by direct numerical simulation of
a turbulent scalar field [13]. The obtained analytical ex-
pressions for a conditional dissipation rate can be use-
ful to study the turbulent combustion process in the
framework of the laminar diffusion flamelet models.
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